Advertisements
Advertisements
Question
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Solution
Let I = `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
= `int_0^1 (1 -"t")^2 sqrt(1 - (1 - "t")) "dt"` ......`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`
= `int_0^1 (1 - 2"t" + "t"^2)sqrt("t") "dt"`
= `int_0^1("t"^(1/2) - 2"t"^(3/2) + "t"^(5/2))"dt"`
= `int_0^1 "t"^(1/2) "dt" - 2 int_0^1 "t"^(3/2) "dt" + int_0^1 "t"^(5/2) "dt"`
= `[("t"^(3/2))/(3/2)]_0^1 - 2[("t"^(5/2))/(5/2)]_0^1 + [("t"^(7/2))/(7/2)]_0^1`
= `2/3(1^(3/2) - 0) - 4/5(1^(5/2) - 0) + 2/7(1^(7/2) - 0)`
= `2/3 - 4/5 + 2/7`
= `(70 - 84 + 30)/105`
∴ I = `16/105`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`