Advertisements
Advertisements
Question
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Solution
Consider R.H.S : `int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Let I = `int_0^"a""f"(x)"d"x + int_0^"a" "f"(2"a" - x)"d"x`
= I1 + I2 ........(i)
Consider I2 = `int_0^"a" "f"(2"a" - x) "d"x`
Put 2a – x = t
∴ − dx = dt
∴ dx = – dt
When x = 0, t = 2a – 0 = 2a
and when x = a, t = 2a – a = a
= I2 = `int_(2"a")^"a" "f"("t")(- "dt")`
= `-int_(2"a")^"a" "f"("t") "dt"`
= `-int_"a"^(2"a") "f"("t") "dt"` ......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"b"^"a" "f"(x) "d"x]`
= `-int_"a"^(2"a") "f"(x) "d"x` ......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"a"^"b" "f"("t") "d"x]`
From (i), I = I1 + I2
= `int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
= `int_0^"a" "f"(x) "d"x + int_"a"^(2"a") "f"(x) "d"x`
= `int_0^(2"a") "f"(x) "d"x` .......`[∵ int_"a"^"b" "f"(x) "d"x = int_"a"^"c" "f"(x) "d"x + int_"c"^"b" "f"(x) "d"x; "a" < "c" < "b"]`
= L.H.S
∴ `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx `
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 logxdx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`