English

Prove that: ∫02af(x) dx=∫0af(x) dx+∫f(2a-x) dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

Sum

Solution

Consider R.H.S : `int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

Let I = `int_0^"a""f"(x)"d"x + int_0^"a" "f"(2"a" - x)"d"x`

= I1 + I2    ........(i)

Consider I2 = `int_0^"a" "f"(2"a" - x)  "d"x`

Put 2a – x = t

∴ − dx = dt

∴ dx = – dt

When x = 0, t = 2a – 0 = 2a

and when x = a, t = 2a – a = a

= I2 = `int_(2"a")^"a" "f"("t")(- "dt")`

= `-int_(2"a")^"a" "f"("t") "dt"`

= `-int_"a"^(2"a") "f"("t") "dt"`   ......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"b"^"a" "f"(x)  "d"x]`

= `-int_"a"^(2"a") "f"(x) "d"x`   ......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"a"^"b" "f"("t")  "d"x]`

From (i), I = I1 + I2

= `int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

= `int_0^"a" "f"(x)  "d"x + int_"a"^(2"a") "f"(x)  "d"x`

= `int_0^(2"a") "f"(x)  "d"x`  .......`[∵ int_"a"^"b" "f"(x) "d"x = int_"a"^"c" "f"(x) "d"x + int_"c"^"b" "f"(x)  "d"x; "a" < "c" < "b"]`

= L.H.S

∴ `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Long Answers III

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 log x dx `


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 logxdx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×