हिंदी

Prove that: ∫02af(x) dx=∫0af(x) dx+∫f(2a-x) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

योग

उत्तर

Consider R.H.S : `int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

Let I = `int_0^"a""f"(x)"d"x + int_0^"a" "f"(2"a" - x)"d"x`

= I1 + I2    ........(i)

Consider I2 = `int_0^"a" "f"(2"a" - x)  "d"x`

Put 2a – x = t

∴ − dx = dt

∴ dx = – dt

When x = 0, t = 2a – 0 = 2a

and when x = a, t = 2a – a = a

= I2 = `int_(2"a")^"a" "f"("t")(- "dt")`

= `-int_(2"a")^"a" "f"("t") "dt"`

= `-int_"a"^(2"a") "f"("t") "dt"`   ......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"b"^"a" "f"(x)  "d"x]`

= `-int_"a"^(2"a") "f"(x) "d"x`   ......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"a"^"b" "f"("t")  "d"x]`

From (i), I = I1 + I2

= `int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

= `int_0^"a" "f"(x)  "d"x + int_"a"^(2"a") "f"(x)  "d"x`

= `int_0^(2"a") "f"(x)  "d"x`  .......`[∵ int_"a"^"b" "f"(x) "d"x = int_"a"^"c" "f"(x) "d"x + int_"c"^"b" "f"(x)  "d"x; "a" < "c" < "b"]`

= L.H.S

∴ `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Long Answers III

संबंधित प्रश्न

Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Solve the following.

`int_1^3x^2 logx  dx`


Solve the following.

`int_1^3x^2log x  dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×