Advertisements
Advertisements
प्रश्न
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
उत्तर
Consider R.H.S : `int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Let I = `int_0^"a""f"(x)"d"x + int_0^"a" "f"(2"a" - x)"d"x`
= I1 + I2 ........(i)
Consider I2 = `int_0^"a" "f"(2"a" - x) "d"x`
Put 2a – x = t
∴ − dx = dt
∴ dx = – dt
When x = 0, t = 2a – 0 = 2a
and when x = a, t = 2a – a = a
= I2 = `int_(2"a")^"a" "f"("t")(- "dt")`
= `-int_(2"a")^"a" "f"("t") "dt"`
= `-int_"a"^(2"a") "f"("t") "dt"` ......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"b"^"a" "f"(x) "d"x]`
= `-int_"a"^(2"a") "f"(x) "d"x` ......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"a"^"b" "f"("t") "d"x]`
From (i), I = I1 + I2
= `int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
= `int_0^"a" "f"(x) "d"x + int_"a"^(2"a") "f"(x) "d"x`
= `int_0^(2"a") "f"(x) "d"x` .......`[∵ int_"a"^"b" "f"(x) "d"x = int_"a"^"c" "f"(x) "d"x + int_"c"^"b" "f"(x) "d"x; "a" < "c" < "b"]`
= L.H.S
∴ `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergral:
`int_1^3 logx dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3x^2log x dx`
Solve the following.
`int_1^3x^2 logx dx`