Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
उत्तर
Let I = `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
= `int_(-1)^(1) [x^3/sqrt(x^2 + 4) + 2/sqrt(x^2 + 4)]*dx`
= `int_(-1)^(1) x^3/sqrt(x^2 + 4)*dx + 2 int (1)/sqrt(x^2 + 4)*dx`
= I1 + 2I2 ...(1)
Let f(x) = `x^3/sqrt(x^2 + 4)`
∴ f(– x) = `(-x)^3/sqrt((-x)^2 + 4)`
= `x^3/sqrt(x^2 + 4)`
= – f(x)
∴ f is an odd function.
∴ `int_(-1)^(1)*dx` = 0, i.e.
I1 = `int_(-1)^(1) = x^3/sqrt(x^2 + 4)*dx` = 0 ...(2)
∵ (– x)2 = x2
∴ `(1)/sqrt(x^2 + 4)` is an even function.
∴ `int_(-1)^(1) f(x)*dx = 2int_0^(1) f(x)*dx`
∴ I2 = `2int_0^(1) 1/sqrt(x^2 + 4)*dx`
= `2[log (x + sqrt(x^2 + 4))]_0^1`
= `2g(1 + sqrt(1 + 4)) - log(0 + sqrt(0 + 4))]`
= `2[log (sqrt(5) + 1) - log 2]`
= `2 log ((sqrt(5 + 1))/2)` ...(3
From (1), (2) and (3, we get
I = `0 + 2[2 log ((sqrt(5 + 1))/2)]`
= `4log ((sqrt(5) + 1)/2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Solve the following.
`int_1^3x^2log x dx`