Advertisements
Advertisements
Question
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Solution
Let I = `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
= `int_(-1)^(1) [x^3/sqrt(x^2 + 4) + 2/sqrt(x^2 + 4)]*dx`
= `int_(-1)^(1) x^3/sqrt(x^2 + 4)*dx + 2 int (1)/sqrt(x^2 + 4)*dx`
= I1 + 2I2 ...(1)
Let f(x) = `x^3/sqrt(x^2 + 4)`
∴ f(– x) = `(-x)^3/sqrt((-x)^2 + 4)`
= `x^3/sqrt(x^2 + 4)`
= – f(x)
∴ f is an odd function.
∴ `int_(-1)^(1)*dx` = 0, i.e.
I1 = `int_(-1)^(1) = x^3/sqrt(x^2 + 4)*dx` = 0 ...(2)
∵ (– x)2 = x2
∴ `(1)/sqrt(x^2 + 4)` is an even function.
∴ `int_(-1)^(1) f(x)*dx = 2int_0^(1) f(x)*dx`
∴ I2 = `2int_0^(1) 1/sqrt(x^2 + 4)*dx`
= `2[log (x + sqrt(x^2 + 4))]_0^1`
= `2g(1 + sqrt(1 + 4)) - log(0 + sqrt(0 + 4))]`
= `2[log (sqrt(5) + 1) - log 2]`
= `2 log ((sqrt(5 + 1))/2)` ...(3
From (1), (2) and (3, we get
I = `0 + 2[2 log ((sqrt(5 + 1))/2)]`
= `4log ((sqrt(5) + 1)/2)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
`int_1^2 x^2 "d"x` = ______
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Solve the following.
`int_1^3 x^2 log x dx `
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3x^2log x dx`