Advertisements
Advertisements
Question
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Solution
Let I = `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
= `int_0^1 (1)/(sqrt(1 + x) + sqrt(x)) xx (sqrt(1 + x) - sqrt(x))/(sqrt(1 + x) - sqrt(x))dx`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/((sqrt(1 + x))^2 - (sqrt(x)^2)`dx
= `int_0^1 (sqrt(1 + x) - sqrt(x))/(1 + x - x)dx`
= `int_0^1[(1 + x)^(1/2) - x^(1/2)]dx`
= `int_0^1 (1 + x)^(1/2)dx - int_0^1 x^(1/2)dx`
= `[((1 + x)^(1/2))/(3/2)]_0^1 - [(x^(3/2))/(3/2)]_0^1`
= `(2)/(3) [(2)^(3/2) - (1)^(3/2)] - (2)/(3) [(1)^(3/2) - 0]`
= `(2)/(3)(2sqrt(2) - 1) - (2)/(3)(1)`
= `(4sqrt(2))/(3) - (2)/(3) - (2)/(3)`
= `(4sqrt2)/3 - 4/3`
∴ I = `(4)/(3) (sqrt(2) - 1)`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`