English

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 6 - Definite Integration [Latest edition]

Advertisements

Chapters

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 6 - Definite Integration - Shaalaa.com
Advertisements

Solutions for Chapter 6: Definite Integration

Below listed, you can find solutions for Chapter 6 of Maharashtra State Board Balbharati for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board.


EXERCISE 6.1EXERCISE 6.2MISCELLANEOUS EXERCISE - 6
EXERCISE 6.1 [Page 145]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 6 Definite Integration EXERCISE 6.1 [Page 145]

EXERCISE 6.1 | Q 1. | Page 145

Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`

EXERCISE 6.1 | Q 2. | Page 145

Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`

EXERCISE 6.1 | Q 3. | Page 145

Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`

EXERCISE 6.1 | Q 4. | Page 145

Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`

EXERCISE 6.1 | Q 5. | Page 145

Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`

EXERCISE 6.1 | Q 6. | Page 145

Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`

EXERCISE 6.1 | Q 7. | Page 145

Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.

EXERCISE 6.1 | Q 8. | Page 145

Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.

EXERCISE 6.1 | Q 9. | Page 145

Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`

EXERCISE 6.1 | Q 10. | Page 145

Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`

EXERCISE 6.1 | Q 11. | Page 145

Evaluate the following definite integral:

`int_1^3 logx.dx`

EXERCISE 6.2 [Page 148]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 6 Definite Integration EXERCISE 6.2 [Page 148]

EXERCISE 6.2 | Q 1) | Page 148

Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`

EXERCISE 6.2 | Q 2) | Page 148

Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`

EXERCISE 6.2 | Q 3) | Page 148

Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`

EXERCISE 6.2 | Q 4) | Page 148

Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`

EXERCISE 6.2 | Q 5) | Page 148

Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`

EXERCISE 6.2 | Q 6) | Page 148

Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`

EXERCISE 6.2 | Q 7) | Page 148

Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`

EXERCISE 6.2 | Q 8) | Page 148

Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`

MISCELLANEOUS EXERCISE - 6 [Pages 148 - 150]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board 6 Definite Integration MISCELLANEOUS EXERCISE - 6 [Pages 148 - 150]

MISCELLANEOUS EXERCISE - 6 | Q I) 1) | Page 148

Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =

  • 0

  • 3

  • 9

  • – 9

MISCELLANEOUS EXERCISE - 6 | Q I) 2) | Page 148

Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =

  • `-log(8/3)`

  • `log(8/3)`

  • `log(3/8)`

  • `-log(3/8)`

MISCELLANEOUS EXERCISE - 6 | Q I) 3) | Page 148

Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =

  • `log (8/3)`

  • `-log (8/3)`

  • `(1)/(2)log(8/3)`

  • `(-1)/(2)log(8/3)`

MISCELLANEOUS EXERCISE - 6 | Q I) 4) | Page 149

Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =

  • 9

  • 4

  • 2

  • 0

MISCELLANEOUS EXERCISE - 6 | Q I) 5) | Page 149

Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?

  • 2

  • 0

  • `(8)/(3)`

  • a

MISCELLANEOUS EXERCISE - 6 | Q I) 6) | Page 149

Choose the correct alternative :

`int_2^3 x^4*dx` =

  • `(1)/(2)`

  • `(5)/(2)`

  • `(5)/(211)`

  • `(211)/(5)`

MISCELLANEOUS EXERCISE - 6 | Q I) 7) | Page 149

Choose the correct alternative :

`int_0^2 e^x*dx` =

  • e – 1

  • 1 – e

  • 1 – e2 

  • e2 – 1

MISCELLANEOUS EXERCISE - 6 | Q I) 8) | Page 149

Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =

  • `int_"b"^"a" f(x)*dx`

  • `-int_"a"^"b" f(x)*dx`

  • `-int_"b"^"a" f(x)*dx`

  • `int_"0"^"a" f(x)*dx`

MISCELLANEOUS EXERCISE - 6 | Q I) 9) | Page 149

Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =

  • 7

  • 49

  • 0

  • `(7)/(2)`

MISCELLANEOUS EXERCISE - 6 | Q I) 10) | Page 149

Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =

  • `(7)/(2)`

  • `(5)/(2)`

  • 7

  • 2

MISCELLANEOUS EXERCISE - 6 | Q II) 1) | Page 149

Fill in the blank : `int_0^2 e^x*dx` = ________

MISCELLANEOUS EXERCISE - 6 | Q II) 2) | Page 149

Fill in the blank : `int_2^3 x^4*dx` = _______

MISCELLANEOUS EXERCISE - 6 | Q II) 3) | Page 149

Fill in the blank : `int_0^1 dx/(2x + 5)` = _______

MISCELLANEOUS EXERCISE - 6 | Q II) 4) | Page 149

Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______

MISCELLANEOUS EXERCISE - 6 | Q II) 5) | Page 149

Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______

MISCELLANEOUS EXERCISE - 6 | Q II) 6) | Page 149

Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______

MISCELLANEOUS EXERCISE - 6 | Q II) 7) | Page 149

Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______

MISCELLANEOUS EXERCISE - 6 | Q II) 8) | Page 149

Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______

MISCELLANEOUS EXERCISE - 6 | Q III) 1) | Page 149

State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`

  • True

  • False

MISCELLANEOUS EXERCISE - 6 | Q III) 2) | Page 149

State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`

  • True

  • False

MISCELLANEOUS EXERCISE - 6 | Q III) 3) | Page 149

State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`

  • True

  • False

MISCELLANEOUS EXERCISE - 6 | Q III) 4) | Page 149

State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`

  • True

  • False

MISCELLANEOUS EXERCISE - 6 | Q III) 5) | Page 149

State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0

  • True

  • False

MISCELLANEOUS EXERCISE - 6 | Q III) 6) | Page 150

State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`

  • True

  • False

MISCELLANEOUS EXERCISE - 6 | Q III) 7) | Page 150

State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`

  • True

  • False

MISCELLANEOUS EXERCISE - 6 | Q III) 8) | Page 150

State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`

  • True

  • False

MISCELLANEOUS EXERCISE - 6 | Q IV) 1) | Page 150

Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 2) | Page 150

Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 3) | Page 150

Solve the following:

`int_1^3 x^2 log x*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 4) | Page 150

Solve the following:

`int_0^1 e^(x^2)*x^3dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 5) | Page 150

Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 6) | Page 150

Solve the following : `int_4^9 (1)/sqrt(x)*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 7) | Page 150

Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 8) | Page 150

Solve the following : `int_2^3 x/(x^2 - 1)*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 9) | Page 150

Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 10) | Page 150

Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`

MISCELLANEOUS EXERCISE - 6 | Q IV) 11) | Page 150

Solve the following : `int_2^3 x/(x^2 + 1)*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 12) | Page 150

Solve the following : `int_1^2 x^2*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 13) | Page 150

Solve the following : `int_(-4)^(-1) (1)/x*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 14) | Page 150

Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 15) | Page 150

Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 16) | Page 150

Solve the following : `int_2^4 x/(x^2 + 1)*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 17) | Page 150

Solve the following : `int_0^1 (1)/(2x - 3)*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 18) | Page 150

Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`

MISCELLANEOUS EXERCISE - 6 | Q IV) 19) | Page 150

Solve the following : `int_1^2 dx/(x(1 + logx)^2`

MISCELLANEOUS EXERCISE - 6 | Q IV) 20) | Page 150

Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`

Solutions for 6: Definite Integration

EXERCISE 6.1EXERCISE 6.2MISCELLANEOUS EXERCISE - 6
Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 6 - Definite Integration - Shaalaa.com

Balbharati solutions for Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 6 - Definite Integration

Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Balbharati solutions for Mathematics Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board 6 (Definite Integration) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Balbharati textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board chapter 6 Definite Integration are Fundamental Theorem of Integral Calculus, Properties of Definite Integrals.

Using Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board solutions Definite Integration exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Balbharati Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board students prefer Balbharati Textbook Solutions to score more in exams.

Get the free view of Chapter 6, Definite Integration Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board additional questions for Mathematics Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×