Advertisements
Advertisements
Question
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Solution 1
Let I = `int_0^1 log(1/x - 1)*dx`
∴ I = `int_0^1 log((1 - x)/x)*dx` ...(i)
= `int_0^1 log[(1 - (1 - x))/(1 - x)]*dx ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`
I = `int_0^"a" log(x/(1 - x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_0^1 log((1 - x)/x)*dx + int_0^1 log(x/(1 - x))*dx`
= `int_0^1[log ((1 - x)/x) + log (x/(1 - x))]*dx`
= `int_0^1 log ((1 - x)/x xx x/(1 - x))*dx`
= `int_0^1 log 1*dx`
∴ 2I = `int_0^1 0*dx`
∴ I = 0.
Solution 2
Let I = `int_0^1 log(1/x - 1)*dx`
= `int_0^1 log((1 - x)/x)*dx`
= `int_0^1 [log(1 - x) - logx]*dx` ...(1)
We use the property `int_0^a f(x)*dx = int_0^a f(a - x)*dx`
Here, a = 1
Hence in I, changing x to 1 – x, we get
I = `int_0^1 [log |1 - (1 - x)| - log(1 - x)]*dx`
= `int_0^1 [logx - log(1 - x)]*dx`
= `-int_0^1 [log (1 - x) - logx]*dx`
= – 1 ...[By (1)]
∴ 2I = 0
∴ I = 0.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`