Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
उत्तर १
Let I = `int_0^1 log(1/x - 1)*dx`
∴ I = `int_0^1 log((1 - x)/x)*dx` ...(i)
= `int_0^1 log[(1 - (1 - x))/(1 - x)]*dx ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`
I = `int_0^"a" log(x/(1 - x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_0^1 log((1 - x)/x)*dx + int_0^1 log(x/(1 - x))*dx`
= `int_0^1[log ((1 - x)/x) + log (x/(1 - x))]*dx`
= `int_0^1 log ((1 - x)/x xx x/(1 - x))*dx`
= `int_0^1 log 1*dx`
∴ 2I = `int_0^1 0*dx`
∴ I = 0.
उत्तर २
Let I = `int_0^1 log(1/x - 1)*dx`
= `int_0^1 log((1 - x)/x)*dx`
= `int_0^1 [log(1 - x) - logx]*dx` ...(1)
We use the property `int_0^a f(x)*dx = int_0^a f(a - x)*dx`
Here, a = 1
Hence in I, changing x to 1 – x, we get
I = `int_0^1 [log |1 - (1 - x)| - log(1 - x)]*dx`
= `int_0^1 [logx - log(1 - x)]*dx`
= `-int_0^1 [log (1 - x) - logx]*dx`
= – 1 ...[By (1)]
∴ 2I = 0
∴ I = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_1^3x^2log x dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`