मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate ∫0111+x+x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`

बेरीज

उत्तर

Let I = `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`

= `int_0^1 1/(sqrt(1 + x) + sqrt(x)) xx (sqrt(1 + x) - sqrt(x))/(sqrt(1 + x) - sqrt(x))  "d"x`

= `int_0^1 (sqrt(1 + x) - sqrt(x))/((sqrt(1 + x))^2 - (sqrt(x))^2)  "d"x`

= `int_0^1 (sqrt(1 + x) - sqrt(x))/(1 + x - x)  "d"x`

= `int_0^1 [(1 + x)^(1/2) - x^(1/2)]  "d"x`

= `int_0^1 (1 + x)^(1/2)  "d"x - int_0^1 x^(1/2)  "d"x`

= `[(1 + x)^(3/2)/(3/2)]_0^1 - [(x^(3/2))/(3/2)]_0^1`

= `2/3 [(2)^(3/2) - (1)^(3/2)] - 2/3 [(1)^(3/2) - 0]`

= `2/3(2sqrt(2) - 1) - 2/3(1)`

= `(4sqrt(2))/3 - 2/3 - 2/3`

∴ I = `4/3 (sqrt(2) - 1)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.6: Definite Integration - Q.4
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×