Advertisements
Advertisements
प्रश्न
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
उत्तर
Let I = `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
= `int_0^1 1/(sqrt(1 + x) + sqrt(x)) xx (sqrt(1 + x) - sqrt(x))/(sqrt(1 + x) - sqrt(x)) "d"x`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/((sqrt(1 + x))^2 - (sqrt(x))^2) "d"x`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/(1 + x - x) "d"x`
= `int_0^1 [(1 + x)^(1/2) - x^(1/2)] "d"x`
= `int_0^1 (1 + x)^(1/2) "d"x - int_0^1 x^(1/2) "d"x`
= `[(1 + x)^(3/2)/(3/2)]_0^1 - [(x^(3/2))/(3/2)]_0^1`
= `2/3 [(2)^(3/2) - (1)^(3/2)] - 2/3 [(1)^(3/2) - 0]`
= `2/3(2sqrt(2) - 1) - 2/3(1)`
= `(4sqrt(2))/3 - 2/3 - 2/3`
∴ I = `4/3 (sqrt(2) - 1)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`