Advertisements
Advertisements
प्रश्न
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
उत्तर
It is given that
`int_a^a sqrt(x)*dx = 2a int_a^(pi/2) sin^3x*dx`
∴ `[x^(3/2)/(3/2)]_0^a = 2a*(2)/(3)` ...[Using Reduction Formula]
∴ `[(2a^(3/2))/(3) - 0] = (4a)/(3)`
∴ `(2asqrt(a))/(3) = (4a)/(3)`
∴ `2a(sqrta - 2)` = 0
∴ a = 0 or `sqrt(a)` = 2
i.e. a = 0 or a = 4
When a = 0, `int_a^(a + 1) x*dx = int_0^1x*dx`
= `[x^2/(2)]_0^1`
= `(1)/(2) - 0`
= `(1)/(2)`
When a = 4, `int_a^(a + 1) d*dx = int_4^5x*dx`
= `[x^2/2]_4^5`
= `(25)/(2) - (16)/(2)`
= `(9)/(2)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`