Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
उत्तर
Let I = `int_2^3 x/((x + 2)(x + 3)) dx`
Let `x/((x + 2)(x + 3)) = "A"/(x + 2) + "B"/(x + 3)` ...(i)
∴ x = A(x + 3) + B(x + 2) ...(ii)
Putting x = – 3 in (ii), we get,
∴ B = 3
Putting x = – 2 in (ii),we get,
∴ A = – 2
From (i), we get,
`x/((x + 2)(x + 3)) = (–2)/(x + 2) + (3)/(x + 3)`
∴ I = `int_2^3 [(–2)/(x + 2) + 3/(x + 3)].dx`
∴ I = `–2int_2^3 (1)/(x + 2).dx + 3 int_2^3 (1)/(x + 3).dx`
∴ I = `–2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`
∴ I = `–2log[log 5 – log 4] + 3[log 6 – log 5]`
∴ I = `–2[log(5/4)] + 3[log(6/5)]`
∴ I = `3log(6/5) – 2log(5/4)`
∴ I = `log(6/5)^3 – 2log(5/4)^2`
∴ I = `log(216/125) – log(25/16)`
∴ I = `log(216/125 × 16/25)`
∴ I = `log(3456/3125)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate:
`int_0^1 |x| dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`