Advertisements
Advertisements
प्रश्न
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
उत्तर
Let I = `int_0^9 (1)/(1 + sqrt(x))*dx`
Put `1 + sqrt(x)` = t
∴ x = (t – 1)2
∴ dx = 2(t – 1)dt
When x = 0, t = 1 + 0 = 1
When x = 9, t = `1 + sqrt(9)`
= 1 + 3 = 4
∴ I = `int_1^4 (2(t - 1))/"t"*"dt"`
= `2int_1^4(1 - 1/"t")*"dt"`
= `2]"t" - log|"t"|]_1^4`
= 2 [(4 – log |4|) – (1 – log |1|)]
= 2 [4 – log 4 – (1 – 0)]
= 2 [4 – log 22 – 1)
= 2 (3 – 2log 2)
∴ I = 6 – 4 log 2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Solve the following.
`int_1^3x^2log x dx`