Advertisements
Advertisements
प्रश्न
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
उत्तर
Let I = `int_1^2 dx/(x(1 + logx)^2`
Put 1 + log x = t
∴ `(1)/x*dx` = dt
When x = 1, t = 1 + log 1
= 1 + 0 = 1
When x = 2, t = 1 + log 2
∴ I = `int_1^(1 + log2) "dt"/"t"^2`
= `[- 1/"t"]_1^(1 + log 2)`
= `-(1/(1 + log 2) - 1)`
= `-((1 - 1 - log 2)/(1 + log 2))`
∴ I = `log2/(1 + log2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
`int_1^2 x^2 "d"x` = ______
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3x^2logx dx`