Advertisements
Advertisements
प्रश्न
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
पर्याय
True
False
उत्तर
`x^3/(x^2 + 7)` is an odd function True.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`