Advertisements
Advertisements
प्रश्न
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
पर्याय
True
False
उत्तर
`int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx` False.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3 x^2 logxdx`