Advertisements
Advertisements
प्रश्न
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
उत्तर
Let I = `int_2^3 x/(x^2 - 1)*dx`
Put x2 – 1 = t
∴ 2x·dx = dt
∴ x·dx = `(1)/(2)*dt`
When x = 2, t = 22 – 1 = 3
When x = 3, t = 32 – 1 = 8
∴ I = `int_3^8 (1)/"t"*"dt"/(2)`
= `(1)/(2)int_3^8 "dt"/"t"`
= `(1)/(2)[log |"t"|]_3^8`
= `(1)/(2)(log 8 - log 3)`
∴ I = `(1)/(2) log (8/3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`