Advertisements
Advertisements
प्रश्न
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
उत्तर
Let I = `int_4^9 (1)/sqrt(x)*dx`
= `int_4^9x^(1/2)*dx = [(x^(1/2))/(1/2)]_4^9`
= `2[sqrt(x)]_4^9`
= `2(sqrt(9) - sqrt(4))`
= 2 (3 – 2)
∴ I = 2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`