मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Choose the correct option from the given alternatives : ∫09xx+9-x⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =

पर्याय

  • 9

  • `(9)/(2)`

  • 0

  • 1

MCQ

उत्तर

`(9)/(2)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 1.09 | पृष्ठ १७६

संबंधित प्रश्‍न

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


`int_2^3 dx/(x(x^3 - 1))` = ______.


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


`int_1^2 x^2  "d"x` = ______


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×