मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

∫23dxx(x3-1) = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int_2^3 dx/(x(x^3 - 1))` = ______.

पर्याय

  • `(1)/(3) log (208/189)`

  • `(1)/(3) log (189/208)`

  • `log (208/189)`

  • `log (189/208)`

MCQ
रिकाम्या जागा भरा

उत्तर

`int_2^3 dx/(x(x^3 - 1)) = bbunderline((1)/(3) log (208/189))`.

Explanation:

`int_2^3 dx/(x(x^3 - 1))`

x3 − 1 = y

⇒ 3x2 dx = dy

⇒ `x^2 dx = dy/3`

⇒ `int_7^26 (dy/3)/((y + 10 y)`

⇒ `1/3 int_7^26 dy/(y (y + 1))`

`1/y - 1/(y + 1)`

⇒ `(y + 1 - y)/(y(y + 1)`

⇒ `1/3 int_7^26(1/y - 1/(y + 1)) dy`

`int1/(y + a) dy = log (y + a)`

⇒ `1-3 [log y - log (y + 1)]_7^26`

⇒ `1/3 {(log 26 - log 7) - (log  27 - log 8)}`

⇒ `1/3 (log 26/7 - log 27/8)`

= `1/3 log  (26 xx 8)/(7 xx 27)`

⇒ `I = 1/3 log  208/189`

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 1.01 | पृष्ठ १७५

संबंधित प्रश्‍न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


`int_1^2 x^2  "d"x` = ______


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Solve the following `int_1^3 x^2log x dx`


Solve the following.

`int_1^3 x^2 logx  dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Solve the following.

`int_1^3 x^2 log x  dx`


Solve the following.

`int_1^3 x^2 log x dx `


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×