Advertisements
Advertisements
प्रश्न
`int_2^3 dx/(x(x^3 - 1))` = ______.
पर्याय
`(1)/(3) log (208/189)`
`(1)/(3) log (189/208)`
`log (208/189)`
`log (189/208)`
उत्तर
`int_2^3 dx/(x(x^3 - 1)) = bbunderline((1)/(3) log (208/189))`.
Explanation:
`int_2^3 dx/(x(x^3 - 1))`
x3 − 1 = y
⇒ 3x2 dx = dy
⇒ `x^2 dx = dy/3`
⇒ `int_7^26 (dy/3)/((y + 10 y)`
⇒ `1/3 int_7^26 dy/(y (y + 1))`
`1/y - 1/(y + 1)`
⇒ `(y + 1 - y)/(y(y + 1)`
⇒ `1/3 int_7^26(1/y - 1/(y + 1)) dy`
`int1/(y + a) dy = log (y + a)`
⇒ `1-3 [log y - log (y + 1)]_7^26`
⇒ `1/3 {(log 26 - log 7) - (log 27 - log 8)}`
⇒ `1/3 (log 26/7 - log 27/8)`
= `1/3 log (26 xx 8)/(7 xx 27)`
⇒ `I = 1/3 log 208/189`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
`int_1^2 x^2 "d"x` = ______
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Solve the following `int_1^3 x^2log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3 x^2 log x dx `
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`