Advertisements
Advertisements
प्रश्न
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
उत्तर
Let I = `int_2^3 x/(x^2 + 1)*dx`
Put x2 + 1 = t
∴ 2x·dx = dt
∴ x·dx = `"dt"/(2)`
When x = 2, t = 22 + 1 = 5
When x = 3, t = 32 + 1 = 10
∴ I = `int_5^10 (1)/"t"*"dt"/(2)`
= `(1)/(2) int_5^10 "dt"/"t"`
= `(1)/(2)[log |"t"|]_5^10`
= `(1)/(2)(log 10 - log 5)`
= `(1)/(2) log (10/5)`
∴ I = `(1)/(2) log 2`
= `log 2^(1/2)`
= `log sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`