Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
उत्तर
Let I = `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx` ...(1)
We use the property, `int_a^b f(x)*dx = int_a^bf(a + b - x)*dx`.
Here `a = pi/(5), b = (3pi)/(10)`.
Hence changing x by `pi/(5) + (3pi)/(10) - x`, we get,
I = `int_(pi/5)^((3pi)/(10)) (sin(pi/5 + (3pi)/(10) - x))/(sin(pi/5 + (pi)/(10) - x) + cos(pi/5 + (3pi)/(10) - x))*dx`
= `int_(pi/5)^((3pi)/(10)) (sin(pi/2 - x))/(sin(pi/2 - x) + cos(pi/2 - x))*dx`
= `int_(pi/5)^((3pi)/(10)) cosx/(cosx + sinx)*dx` ...(2)
Adding (1) and (2), we get,
2I = `int_(pi/5)^((3pi)/(10)) sinx/(sinx + cosx)*dx + int_(pi/5)^((3pi)/(10)) cosx/(cosx + sinx)*dx`
= `int_(pi/5)^((3pi)/(10)) (sinx + cosx)/(sinx + cosx)*dx`
= `int_(pi/5)^((3pi)/(10))1*dx = [x]_(pi/5)^((3pi)/10)`
= `(3pi)/(10) - pi/(5)`
= `pi/(10)`
∴ I = `pi/(20)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Solve the following.
`int_1^3x^2 logx dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
The principle solutions of the equation cos θ = `1/2` are ______.
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`