मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫0π4sin4x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi/4) sin^4x*dx`

बेरीज

उत्तर

Consider sin4x = `(sin^2x)^2`

= `((1 - cos 2x)/2)^2`

= `(1)/(4)[1 - 2 cos 2x + cos^2 2x]`

= `(1)/(4)[1 - 2 cos 2x + (1 + cos 4x)/2]`

= `(1)/(4)[3/2 - 2 cos 2x + 1/2 cos 4x]`

∴ `int_0^(pi/4) sin^4x*dx`

= `(1)/(4) int_0^(pi/4) [3/2 - 2 cos 2x 1/2 cos 4x]*dx`

= `(3)/(8) int_0^(pi/4) 1*dx - 1/2 int_0^(pi/4) cos 2x*dx + 1/8 int_0^(pi/4) cos 4x*dx`

= `(3)/(8)[x]_0^(pi/4) - 1/2[(sin2x)/2]_0^(pi/4) + 1/8[(sin4x)/4]_0^(pi/4)`

= `(3)/(8)[pi/4 - 0] - 1/4[sin  pi/2 - sin0] + 1/32[sin pi - sin0]`

= `(3pi)/(32) - (1)/(4)[1 - 0] + (1)/(32)(0 - 0)`

= `(3pi)/(32) - (1)/(4)`

= `(3pi - 8)/(32)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

संबंधित प्रश्‍न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Solve the following.

`int_1^3 x^2 logxdx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×