Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
उत्तर
Consider sin4x = `(sin^2x)^2`
= `((1 - cos 2x)/2)^2`
= `(1)/(4)[1 - 2 cos 2x + cos^2 2x]`
= `(1)/(4)[1 - 2 cos 2x + (1 + cos 4x)/2]`
= `(1)/(4)[3/2 - 2 cos 2x + 1/2 cos 4x]`
∴ `int_0^(pi/4) sin^4x*dx`
= `(1)/(4) int_0^(pi/4) [3/2 - 2 cos 2x 1/2 cos 4x]*dx`
= `(3)/(8) int_0^(pi/4) 1*dx - 1/2 int_0^(pi/4) cos 2x*dx + 1/8 int_0^(pi/4) cos 4x*dx`
= `(3)/(8)[x]_0^(pi/4) - 1/2[(sin2x)/2]_0^(pi/4) + 1/8[(sin4x)/4]_0^(pi/4)`
= `(3)/(8)[pi/4 - 0] - 1/4[sin pi/2 - sin0] + 1/32[sin pi - sin0]`
= `(3pi)/(32) - (1)/(4)[1 - 0] + (1)/(32)(0 - 0)`
= `(3pi)/(32) - (1)/(4)`
= `(3pi - 8)/(32)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Solve the following.
`int_1^3 x^2 logxdx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`