Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
उत्तर
`int_0^4 (1)/sqrt(4x - x^2)*dx`
= `int_0^4 (1)/sqrt(4 - (x^2 - 4x + 4))*dx`
= `int_0^4 (1)/sqrt(2^2 - (x - 2)^2)*dx`
= `[sin^-1 ((x - 2)/2)]_0^4`
= `sin^-1((4 - 2)/2)- sin^-1 ((0 - 2)/2)`
= sin–1 1 –sin–1 (– 1)
= 2 sin–1 1 ...[∵ sin–1 (– x) = – sin–1 x]
= `2(pi/2)`
= `pi`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Solve the following `int_1^3 x^2log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_1^3 x^2 log x dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`