Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
उत्तर
Let I = `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Let f(x) = `(x + x^3)/(16 - x^2)`
∴ f( –x) = `((-x)+(-x)^3)/(16 - (- x)^2`
= `(-(x+x^3))/(16 - x^2)`
= `-f(x)`
∴ f is an odd function.
∴ `int_-a^a f(x)*dx = 0, "i.e." int_a^a (x + x^3)/(16 - x^2)*dx` = 0.
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
`int_0^1 1/(2x + 5)dx` = ______
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_1^3x^2 logx dx`