Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
उत्तर
Let I = `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Let f(x) = `x^3 sin^4x`
∴ f( –x) = `(-x)^3 sin^4(- x)`
= `-x^3sin^4x`
= `-f(x)`
∴ f is an odd function.
∴ `int_((-pi)/4)^(pi/4) f(x)*dx = 0, "i.e." int_((-pi)/4)^(pi/4) x^3 sin^4x*dx` = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
The principle solutions of the equation cos θ = `1/2` are ______.
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3x^2logx dx`
Solve the following.
`int_1^3x^2 logx dx`