मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫01logx1-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`

बेरीज

उत्तर

Let I = `int_0^1 (logx)/sqrt(1 - x^2)*dx`

Put x = sin θ
∴ dx = cos θ dθ
and
`sqrt(1 - x^2) = sqrt(1 - sin^2 theta) = sqrt(cos^2 theta)` = cos θ

When x = 0, sin θ = 0  ∴ θ = 0
When x = 1, sin θ = 1  ∴ θ = `pi/(2)`

∴ I = `int_0^(pi/2) log sin theta *d theta`

Using the property, `int_0^(2a) f(x)*dx = int_0^(a)[f(x) + f(2a - x)]*dx`, we get

I = `int_0^(pi/4) [log sin theta + log sin (pi/2 - theta)]*d theta`

= `int_0^(pi/4) (log sin theta + log cos theta)* d theta`

= `int_0^(pi/4) log sin theta cos theta* d theta`

= `int_0^(pi/4) log((2 sin theta cos theta)/2)*d theta`

= `int_0^(pi/4) (log sin 2 theta - log 2)*d theta`

= `int_0^(pi/4) log sin 2 theta*d theta - int_0^(pi/4) log 2* d theta`

= I1 – I2                                                  ...(Say)

I2 = `int_0^(pi/4) log 2* d theta`

= `log 2 int_0^(pi/4) 1*d theta`

= `log 2 [theta]_0^(pi/4)`

= `(log 2)[pi/4 - 0]`

= `pi/(4) log 2`

I1 = `int_0^(pi/4) log sin 2 theta * d theta`

Put 2θ = t. 

Then dθ= `dt/(2)`

When θ = 0, t = 0

When θ = `pi/(4), t = 2(pi/4) = pi/(2)`

∴ I1 = `int_0^(pi/2) log sin t xx dt/(2)`

= `(1)/(2) int_0^(pi/2) log sin theta* d theta`

= `(1)/(2)"I"     ...[ because int_a^b f(x)*dx = int_a^b f(t)*dt]`

∴ I = `(1)/(2) "I" - pi/(4)log 2`

∴ `(1)/(2)"I" = - pi/(4) log 2`

∴ I = `- pi/(2) log 2`

= `pi/(2) log (1/2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_0^2 e^x*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Solve the following.

`int_1^3 x^2 logxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×