Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
उत्तर
Let I = `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Put x = sin θ
∴ dx = cos θ dθ
and
`sqrt(1 - x^2) = sqrt(1 - sin^2 theta) = sqrt(cos^2 theta)` = cos θ
When x = 0, sin θ = 0 ∴ θ = 0
When x = 1, sin θ = 1 ∴ θ = `pi/(2)`
∴ I = `int_0^(pi/2) log sin theta *d theta`
Using the property, `int_0^(2a) f(x)*dx = int_0^(a)[f(x) + f(2a - x)]*dx`, we get
I = `int_0^(pi/4) [log sin theta + log sin (pi/2 - theta)]*d theta`
= `int_0^(pi/4) (log sin theta + log cos theta)* d theta`
= `int_0^(pi/4) log sin theta cos theta* d theta`
= `int_0^(pi/4) log((2 sin theta cos theta)/2)*d theta`
= `int_0^(pi/4) (log sin 2 theta - log 2)*d theta`
= `int_0^(pi/4) log sin 2 theta*d theta - int_0^(pi/4) log 2* d theta`
= I1 – I2 ...(Say)
I2 = `int_0^(pi/4) log 2* d theta`
= `log 2 int_0^(pi/4) 1*d theta`
= `log 2 [theta]_0^(pi/4)`
= `(log 2)[pi/4 - 0]`
= `pi/(4) log 2`
I1 = `int_0^(pi/4) log sin 2 theta * d theta`
Put 2θ = t.
Then dθ= `dt/(2)`
When θ = 0, t = 0
When θ = `pi/(4), t = 2(pi/4) = pi/(2)`
∴ I1 = `int_0^(pi/2) log sin t xx dt/(2)`
= `(1)/(2) int_0^(pi/2) log sin theta* d theta`
= `(1)/(2)"I" ...[ because int_a^b f(x)*dx = int_a^b f(t)*dt]`
∴ I = `(1)/(2) "I" - pi/(4)log 2`
∴ `(1)/(2)"I" = - pi/(4) log 2`
∴ I = `- pi/(2) log 2`
= `pi/(2) log (1/2)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3 x^2 logxdx`