Advertisements
Advertisements
प्रश्न
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
उत्तर
`int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
R.H.S : `int_0^a f(x) dx + int_0^a f(2a - x)dx`
= I1 + I2 ...(i)
Consider I2 = `int_0^a f(2a - x)dx`
Put 2a − x = t
i.e. x = 2a − t
∴ −1 dx = 1 dt
`\implies` dx = − dt
As x varies from 0 to 2a, t varies from 2a to 0
I = `int_(2a)^a f(t) (- dt)`
= `- int_(2a)^a f(t) dt`
= `int_0^(2a) f(t) dt` ...`(int_a^b f(x)dx = -int_b^a f(x)dx)`
= `int_0^(2a) f(x) dx` ...`(int_a^b f(x)dx = int_a^b f(t)dx)`
∴ `int_0^a f(x)dx = int_0^(2a) f(x)dx`
From equation (i)
`int_0^a f(x)dx + int_0^a f(2a - x)dx = int_0^a f(x)dx + int_0^(2a) f(x)dx`
= `int_0^(2a) f(x)dx` : L.H.S
Thus, `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate:
`int_0^1 |x| dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`