Advertisements
Advertisements
प्रश्न
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
उत्तर
Let `int "f"(x) "d"x = "g"(x) + c`
`int_"a"^"b""f"(x)"d"x = ["g"(x) + "c"]_"a"^"b"`
= `[{"g"("b") + "c"} - {"g"("a") + "c"}]`
= `"g"("b") - "g"("a")` ........(i)
`int_"a"^"c" "f"(x)"d"x + int_"c"^"b" "f"(x)"d"x = ["g"(x) + "c"]_"a"^"c" + ["g"(x) + "c"]_"c"^"b"`
= `[{"g"("c") + "c"} - {"g"("a") + "c"}] + ["g"("b") + "c"} - "g"("c") + "c"]_"c"^"b"`
= `"g"("c") + "c" - "g"("a") - "c" + "g"("b") + "c" - "g"("c") - "c"`
= `"g"("b") - "g"("a")` .......(ii)
From (i) and (ii), we get
`int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
संबंधित प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`