मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that: ∫abf(x) dx=∫acf(x) dx+∫cb f(x) dx, where a < c < b - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b

बेरीज

उत्तर

Let `int "f"(x) "d"x = "g"(x) + c`

`int_"a"^"b""f"(x)"d"x = ["g"(x) + "c"]_"a"^"b"`

= `[{"g"("b") + "c"} - {"g"("a") + "c"}]`

= `"g"("b") - "g"("a")`    ........(i)

`int_"a"^"c" "f"(x)"d"x + int_"c"^"b" "f"(x)"d"x = ["g"(x) + "c"]_"a"^"c" + ["g"(x) + "c"]_"c"^"b"`

= `[{"g"("c") + "c"} - {"g"("a") + "c"}] + ["g"("b") + "c"} - "g"("c") + "c"]_"c"^"b"`

= `"g"("c") + "c" - "g"("a") - "c" + "g"("b") + "c" - "g"("c") - "c"`

= `"g"("b") - "g"("a")`   .......(ii)

From (i) and (ii), we get

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Short Answers II

संबंधित प्रश्‍न

Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×