मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫0π2sinx-cosx1+sinxcosx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`

बेरीज

उत्तर

Let I = `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`

We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.

Here `a = pi/(2)`.

Hence In I, we change x by `pi/(2) - x`.

∴ I = `int_0^(pi/2) (sin(pi/2 - x) - cos(pi/2 - x))/(1 + sin(pi/2 - x) cos(pi/2 - x)`

= `int_0^(pi/2) (cosx - sinx)/(1 + cosx sinx)*dx`

= `- int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`

= – I
∴ 2I = 0
∴ I = 0.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x  dx`


Solve the following.

`int_1^3 x^2 log x dx `


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×