Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
उत्तर
Let I = `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.
Here `a = pi/(2)`.
Hence In I, we change x by `pi/(2) - x`.
∴ I = `int_0^(pi/2) (sin(pi/2 - x) - cos(pi/2 - x))/(1 + sin(pi/2 - x) cos(pi/2 - x)`
= `int_0^(pi/2) (cosx - sinx)/(1 + cosx sinx)*dx`
= `- int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
= – I
∴ 2I = 0
∴ I = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3 x^2 log x dx `
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`