Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
पर्याय
`int_"b"^"a" f(x)*dx`
`-int_"a"^"b" f(x)*dx`
`-int_"b"^"a" f(x)*dx`
`int_"0"^"a" f(x)*dx`
उत्तर
`int_"a"^"b" f(x)*dx` = `-int_"b"^"a" f(x)*dx`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
`int_0^1 1/(2x + 5)dx` = ______
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`