मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫3512x+3-2x-3⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`

बेरीज

उत्तर

`int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`

= `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3)) xx (sqrt(2x + 3) + sqrt(2x - 3))/(sqrt(2x + 3) + sqrt(2x - 3))*dx`

= `int_3^5 (sqrt(2x + 3) + sqrt(2x - 3))/((2x + 3) - (2x - 3))*dx`

= `(1)/(6) int_3^5 (2x + 3)^(1/2)*dx + (1)/(6) int_3^5 (2x - 3)^(1/2)*dx`

= `(1)/(6)[(2x + 3^(3/2))/(2(3/2))]_3^5 + (1)/(6)[((2x - 3)^(3/2))/(2(3/2))]_3^5`

= `(1)/(18)[(10 + 3)^(3/2) - (6 + 3)^(3/2)] + (1)/(18)[(10 - 3)^(3/2) - (6 - 3)^(3/2)]`

= `(1)/(18)[13sqrt(13) - 9sqrt(9)] + (1)/(18)[7sqrt(7) - 3sqrt(3)]`

= `(1)/(18)(13sqrt(13) - 27 + 7sqrt(7) - 3sqrt(3))`

= `(1)/(18)(13sqrt(13) + 7sqrt(7) - 3sqrt(3) - 27)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

संबंधित प्रश्‍न

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×