मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫0πxsinxcos2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^pi x sin x cos^2x*dx`

बेरीज

उत्तर

Let I = `int_0^pi x sin x cos^2x*dx`

= `(1)/(2) int_0^a x(2 sin x cos x)cos x*dx`

= `(1)/(2) int_0^pi x(sin 2x cos x)*dx`

= `(1)/(4) int_0^pi x (2 sin 2x cos x)*dx`

= `(1)/(4) int_0^pi [sin(2x + x) + sin(2x - x)]*dx`

= `(1)/(4)[int_0^pi x sin 3x*dx + int_0^pi x sin x*dx]`

= `(1)/(4)["I"_1 + "I"_2]`                          ...(1)

I1 = `int_0^pi x sin 3x*dx`

= `[x int sin 3x*dx]_0^pi - int[{d/dx (x) int sin 3x*dx}]*dx`

= `[x((- cos3x)/3)]_0^pi - int_0^pi 1((- cos 3x)/3)*dx`

= `[- (pi cos 3pi)/3 + 0] + (1)/(3) int_0^pi cos 3x*dx`

= `- pi/(3)(- 1) + 1/3 [(sin3x)/3]_0^pi`

= `pi/(3)  + (1)/(3)[0 - 0]`

= `pi/(3)`                                          ...(2)

I2 = `int_0^pi x sinx*dx`

= `[x int sinx*dx]_0^pi - int_0^pi[{d/dx (x) int sinx*dx}]*dx`

= `[x(- cos x)]_0^pi - int_0^pi 1*(- cos x)*dx`

= `[ - pi cospi + 0] + int_0^pi cosx*dx`

= `-pi(-1) + [sin x]_0^pi`

= `pi + [sin pi - sin 0]`

= `pi + (0 - 0)`
= π                                            ...(3)
From (1), (2) and (3), we get

I = `(1)/(4)[pi/3 + pi]`

= `(1)/(4)((4pi)/3)`

= `pi/(3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate `int_1^3 log x  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×