Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
उत्तर
Let I = `int_0^pi x sin x cos^2x*dx`
= `(1)/(2) int_0^a x(2 sin x cos x)cos x*dx`
= `(1)/(2) int_0^pi x(sin 2x cos x)*dx`
= `(1)/(4) int_0^pi x (2 sin 2x cos x)*dx`
= `(1)/(4) int_0^pi [sin(2x + x) + sin(2x - x)]*dx`
= `(1)/(4)[int_0^pi x sin 3x*dx + int_0^pi x sin x*dx]`
= `(1)/(4)["I"_1 + "I"_2]` ...(1)
I1 = `int_0^pi x sin 3x*dx`
= `[x int sin 3x*dx]_0^pi - int[{d/dx (x) int sin 3x*dx}]*dx`
= `[x((- cos3x)/3)]_0^pi - int_0^pi 1((- cos 3x)/3)*dx`
= `[- (pi cos 3pi)/3 + 0] + (1)/(3) int_0^pi cos 3x*dx`
= `- pi/(3)(- 1) + 1/3 [(sin3x)/3]_0^pi`
= `pi/(3) + (1)/(3)[0 - 0]`
= `pi/(3)` ...(2)
I2 = `int_0^pi x sinx*dx`
= `[x int sinx*dx]_0^pi - int_0^pi[{d/dx (x) int sinx*dx}]*dx`
= `[x(- cos x)]_0^pi - int_0^pi 1*(- cos x)*dx`
= `[ - pi cospi + 0] + int_0^pi cosx*dx`
= `-pi(-1) + [sin x]_0^pi`
= `pi + [sin pi - sin 0]`
= `pi + (0 - 0)`
= π ...(3)
From (1), (2) and (3), we get
I = `(1)/(4)[pi/3 + pi]`
= `(1)/(4)((4pi)/3)`
= `pi/(3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`