English

Evaluate the following : ∫0πxsinxcos2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^pi x sin x cos^2x*dx`

Sum

Solution

Let I = `int_0^pi x sin x cos^2x*dx`

= `(1)/(2) int_0^a x(2 sin x cos x)cos x*dx`

= `(1)/(2) int_0^pi x(sin 2x cos x)*dx`

= `(1)/(4) int_0^pi x (2 sin 2x cos x)*dx`

= `(1)/(4) int_0^pi [sin(2x + x) + sin(2x - x)]*dx`

= `(1)/(4)[int_0^pi x sin 3x*dx + int_0^pi x sin x*dx]`

= `(1)/(4)["I"_1 + "I"_2]`                          ...(1)

I1 = `int_0^pi x sin 3x*dx`

= `[x int sin 3x*dx]_0^pi - int[{d/dx (x) int sin 3x*dx}]*dx`

= `[x((- cos3x)/3)]_0^pi - int_0^pi 1((- cos 3x)/3)*dx`

= `[- (pi cos 3pi)/3 + 0] + (1)/(3) int_0^pi cos 3x*dx`

= `- pi/(3)(- 1) + 1/3 [(sin3x)/3]_0^pi`

= `pi/(3)  + (1)/(3)[0 - 0]`

= `pi/(3)`                                          ...(2)

I2 = `int_0^pi x sinx*dx`

= `[x int sinx*dx]_0^pi - int_0^pi[{d/dx (x) int sinx*dx}]*dx`

= `[x(- cos x)]_0^pi - int_0^pi 1*(- cos x)*dx`

= `[ - pi cospi + 0] + int_0^pi cosx*dx`

= `-pi(-1) + [sin x]_0^pi`

= `pi + [sin pi - sin 0]`

= `pi + (0 - 0)`
= π                                            ...(3)
From (1), (2) and (3), we get

I = `(1)/(4)[pi/3 + pi]`

= `(1)/(4)((4pi)/3)`

= `pi/(3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Solve the following.

`int_1^3 x^2 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×