Advertisements
Advertisements
Question
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Solution
Let I = `int_0^pi x sin x cos^2x*dx`
= `(1)/(2) int_0^a x(2 sin x cos x)cos x*dx`
= `(1)/(2) int_0^pi x(sin 2x cos x)*dx`
= `(1)/(4) int_0^pi x (2 sin 2x cos x)*dx`
= `(1)/(4) int_0^pi [sin(2x + x) + sin(2x - x)]*dx`
= `(1)/(4)[int_0^pi x sin 3x*dx + int_0^pi x sin x*dx]`
= `(1)/(4)["I"_1 + "I"_2]` ...(1)
I1 = `int_0^pi x sin 3x*dx`
= `[x int sin 3x*dx]_0^pi - int[{d/dx (x) int sin 3x*dx}]*dx`
= `[x((- cos3x)/3)]_0^pi - int_0^pi 1((- cos 3x)/3)*dx`
= `[- (pi cos 3pi)/3 + 0] + (1)/(3) int_0^pi cos 3x*dx`
= `- pi/(3)(- 1) + 1/3 [(sin3x)/3]_0^pi`
= `pi/(3) + (1)/(3)[0 - 0]`
= `pi/(3)` ...(2)
I2 = `int_0^pi x sinx*dx`
= `[x int sinx*dx]_0^pi - int_0^pi[{d/dx (x) int sinx*dx}]*dx`
= `[x(- cos x)]_0^pi - int_0^pi 1*(- cos x)*dx`
= `[ - pi cospi + 0] + int_0^pi cosx*dx`
= `-pi(-1) + [sin x]_0^pi`
= `pi + [sin pi - sin 0]`
= `pi + (0 - 0)`
= π ...(3)
From (1), (2) and (3), we get
I = `(1)/(4)[pi/3 + pi]`
= `(1)/(4)((4pi)/3)`
= `pi/(3)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Solve the following.
`int_1^3 x^2 log x dx`