Advertisements
Advertisements
Question
Fill in the blank : `int_2^3 x^4*dx` = _______
Solution
`int_2^3 x^4*dx` = `[x^5/5]_2^1`
= `(1)/(5)(3^5 - 2^5)`
= `(1)/(5)(243 - 32)`
= `(211)/(5)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`