Advertisements
Advertisements
Question
Evaluate : `int_1^3 (cos(logx))/x*dx`
Solution
Let I = `int_1^3 (cos(logx))/x*dx`
= `int_1^3 cos(logx)*1/x*dx`
Put log x = t
∴ `(1)/x*dx` = dt
When x = 1, t = log 1 = 0
When x = 3, t = log 3
∴ I = `int_0^log3 cos t *dt = [sint]_0^log3`
= sin (log 3) - sin 0
= sin (log 3).
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Solve the following.
`int_1^3 x^2 log x dx `
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 logxdx`
Solve the following.
`int_1^3x^2 logx dx`