English

Evaluate : ∫13cos(logx)x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_1^3 (cos(logx))/x*dx`

Sum

Solution

Let I = `int_1^3 (cos(logx))/x*dx`

= `int_1^3 cos(logx)*1/x*dx`
Put log x = t

∴ `(1)/x*dx` = dt
When x = 1, t = log 1 = 0
When x = 3, t = log 3

∴ I = `int_0^log3  cos t *dt = [sint]_0^log3`

= sin (log 3) - sin 0
= sin (log 3).

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Solve the following.

`int_1^3 x^2 log x dx `


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3 x^2 logxdx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×