Advertisements
Advertisements
Question
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Solution
`int_2^3 (1)/(x^2 + 5x + 6)*dx`
= `int_2^3 (1)/((x + 2)(x + 3))*dx`
= `int_2^3 ((x + 3) - (x + 2))/((x + 2)(x + 3))*dx`
= `int_2^3 [1/(x + 2) - 1/(x + 3)]*dx`
= `[log (x + 2) - log(x + 3)]_2^3`
= `[log |(x + 2)/(x + 3)|]_2^3`
= `log((3 + 2)/(3 + 3)) - log((2 + 2)/(2 + 3))`
= `log (5)/(6) - log (4)/(5)`
= `log(5/6 xx 5/4)`
= `log(25/24)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`