Advertisements
Advertisements
Question
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Options
True
False
Solution
True
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`