English

Evaluate ∫23x(x+2)(x+3) dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`

Sum

Solution

Let I =  `int_2^3 x/((x + 2)(x + 3))  "d"x`

Let `x/((x + 2) x + 3) = "A"/(x + 2) + "B"/(x + 3)`  .....(i)

∴ x = A(x + 3) + B(x + 2)   ......(ii)

Putting x = – 3 in (ii), we get

– 3 = – B

∴ B = 3

Putting x = – 2 in (ii), we get

– 2 = A

∴ A = – 2

From (i), we get

`x/((x + 2)(x + 3)) = (-2)/(x + 2) + 3/(x + 3)`

∴ I = `int_2^3[(-2)/(x + 2) + 3/(x + 3)]  "d"x`

= `-2 int_2^3 1/(x + 2)  "d"x + 3 int_2^3 1/(x + 3)  "d"x`

= `-2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`

= – 2(log 5 – log 4) + 3(log 6 –  log 5)

= `- 2 log(5/4) + 3 log(6/5)`

= `3 log(6/5) - 2log(5/4)`

= `log (6/5)^3 - log(5/4)^2`

= `log(216/125) - log(25/16)`

= `log(216/125 xx 16/25)`

∴ I = `log(3456/3125)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 1.6: Definite Integration - Q.5

RELATED QUESTIONS

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


`int_0^1 1/(2x + 5)dx` = ______


Solve the following.

`int_1^3 x^2 log x  dx`


Solve the following.

`int_1^3 x^2 log x dx `


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×