Advertisements
Advertisements
Question
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Solution
Let I = `int_2^3 x/((x + 2)(x + 3)) "d"x`
Let `x/((x + 2) x + 3) = "A"/(x + 2) + "B"/(x + 3)` .....(i)
∴ x = A(x + 3) + B(x + 2) ......(ii)
Putting x = – 3 in (ii), we get
– 3 = – B
∴ B = 3
Putting x = – 2 in (ii), we get
– 2 = A
∴ A = – 2
From (i), we get
`x/((x + 2)(x + 3)) = (-2)/(x + 2) + 3/(x + 3)`
∴ I = `int_2^3[(-2)/(x + 2) + 3/(x + 3)] "d"x`
= `-2 int_2^3 1/(x + 2) "d"x + 3 int_2^3 1/(x + 3) "d"x`
= `-2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`
= – 2(log 5 – log 4) + 3(log 6 – log 5)
= `- 2 log(5/4) + 3 log(6/5)`
= `3 log(6/5) - 2log(5/4)`
= `log (6/5)^3 - log(5/4)^2`
= `log(216/125) - log(25/16)`
= `log(216/125 xx 16/25)`
∴ I = `log(3456/3125)`
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^1 1/(2x + 5)dx` = ______
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3 x^2 log x dx `
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`