Advertisements
Advertisements
Question
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solution
Let I = `int_(-9)^9 x^3/(4 - x^2)*dx`
Let f(x) = `x^3/(4 - x^2)`
∴ f(– x) = `(-x)^2/(4 - (-x)^2`
= `-x^3/(4 - x^2)`
= – f(x)
∴ f(x) is an odd function.
∴ `int_(-9)^9 x^3/(4 - x^2)*dx = 0. ...[because int_("a")^"a" f(x) = 0, if f(x) "odd function"]`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`