English

Evaluate the following : ∫0a1a2+ax-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`

Sum

Solution

Let I = `int_0^a 1/(a^2 + ax - x^2)*dx`

a2 + ax – x2 = `a^2 - (x^2 - ax + a^2/4) + a^2/(4)`

= `(5a^2)/(4) - (x - a/2)^2`

= `(sqrt(5a)/2)^2 - (x - a/2)^2`

∴ I = `int_0^a dx/(((sqrt(5)a)/2)^2 - (x - a/2)^2)`

= `(1)/((2 xx sqrt(5)a)/2)*[log|((sqrt(5)a)/2 + x - a/2)/((sqrt(5)a)/(2) - x + a/2)|]_0^a`

= `(1)/(sqrt(5)a)[log|((sqrt(5)a)/2 + a - a/2)/((sqrt(5)a)/(2) - a + a/2)| - log |((sqrt(5)a)/2 - a/2)/((sqrt(5)a)/(2) + a/2)|]`

= `(1)/(sqrt(5)a)[log |(sqrt(5)/2 + 1/2)/(sqrt(5)/2 - 1/2)| - log |(sqrt(5)/2 - 1/2)/(sqrt(5)/2 + 1/2)|]`

= `(1)/(sqrt(5)a)[log|((sqrt(5) + 1)/(sqrt(5) - 1))|- log|((sqrt(5) - 1)/(sqrt(5) + 1))|]`

= `(1)/(sqrt(5)a) log|(sqrt(5) + 1)/(sqrt(5) - 1) xx (sqrt(5) + 1)/(sqrt(5) - 1)|`

= `(1)/(sqrt(5)a) log [((sqrt(5) + 1)/(sqrt(5) - 1))^2]`

= `(1)/(sqrt(5)a) log |(5 + 1 + 2sqrt(5))/(5 + 1  - 2sqrt(5))|`

= `(1)/(sqrt(5)a) log  (6 + 2sqrt(5))/(6 - 2sqrt(5))`

= `(1)/(sqrt(5)a) log|(6 + 2sqrt(5))/(6 - 2sqrt(5)) xx (6 + 2sqrt(5))/(6 + 2sqrt(5))|`

= `(1)/(sqrt(5)a) log|(36 + 20 + 24sqrt(5))/(36 - 20)|`

= `(1)/(sqrt(5)a) log |(56 + 24sqrt(5))/(16)|`

= `(1)/(sqrt(5)a) log|(7 + 3sqrt(5))/(2)|`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.03 | Page 176

RELATED QUESTIONS

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Choose the correct alternative :

`int_2^3 x^4*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_1^3 log x  "d"x`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Solve the following.

`int_1^3x^2log x  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×