Advertisements
Advertisements
Question
Evaluate `int_1^3 log x "d"x`
Solution
Let I = `int_1^3 log x "d"x`
= `int_1^3 logx*1 "d"x`
= `[log x int 1*"d"x]_1^3 - int_1^3["d"/("d"x) (log x) int1*"d"x] "d"x`
= `[logx*(x)]_1^3 - int_1^3 1/x*x "d"x`
= `[x log x]_1^3 - int_1^3 1*"d"x`
= (3 log 3 – 1 log 1) – `[x]_1^3`
= (3 log 3 – 0) – (3 – 1)
= 3 log 3 – 2
= log 33 – 2
∴ I = log 27 – 2
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Solve the following.
`int_1^3x^2 logx dx`