English

Evaluate the following : ∫0π (sin-1x+cos-1x)3sin3x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`

Sum

Solution

Let I = `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`

We know that, sin–1x + cos–1x = `pi/(2)`
and
sin 3x = 3 sin x – 4 sin3x

∴ 4sin3x = 3 sin x – sin 3x

∴ sin3x = `3/4 sinx - 1/4 sin3x`

∴ I = `int_0^pi (pi/2)^3[3/4 sin x - 1/4 sin 3x]*dx`

= `pi^3/(8) xx 3/4 int_0^pi sin x*dx - pi^2/(8) xx 1/4 int_0^pi sin3x`

= `(3pi^3)/(32) [- cos pi - ( - cos 0)] - pi^3/(32)[- (cos 3pi)/(3) - ((- cos0)/3)]`

= `(3pi^3)/(32)[1 + 1] - pi^3/(32)[1/3 + 1/3]`

= `(6pi^3)/(32) - (2pi^3)/(96)`

= `(18pi^3 - 2pi^3)/(96)`

= `(16pi^3)/(96)`

= `pi^3/(6)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.08 | Page 176

RELATED QUESTIONS

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative :

`int_0^2 e^x*dx` =


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×