Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
उत्तर
Let I = `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
We know that, sin–1x + cos–1x = `pi/(2)`
and
sin 3x = 3 sin x – 4 sin3x
∴ 4sin3x = 3 sin x – sin 3x
∴ sin3x = `3/4 sinx - 1/4 sin3x`
∴ I = `int_0^pi (pi/2)^3[3/4 sin x - 1/4 sin 3x]*dx`
= `pi^3/(8) xx 3/4 int_0^pi sin x*dx - pi^2/(8) xx 1/4 int_0^pi sin3x`
= `(3pi^3)/(32) [- cos pi - ( - cos 0)] - pi^3/(32)[- (cos 3pi)/(3) - ((- cos0)/3)]`
= `(3pi^3)/(32)[1 + 1] - pi^3/(32)[1/3 + 1/3]`
= `(6pi^3)/(32) - (2pi^3)/(96)`
= `(18pi^3 - 2pi^3)/(96)`
= `(16pi^3)/(96)`
= `pi^3/(6)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`