Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
विकल्प
9
4
2
0
उत्तर
Let I = `int_4^9 (1)/sqrt(x)*dx`
= `int_4^9x^(1/2)*dx = [(x^(1/2))/(1/2)]_4^9`
= `2[sqrt(x)]_4^9`
= `2(sqrt(9) - sqrt(4))`
= 2 (3 – 2)
∴ I = 2.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
`int_0^1 1/(2x + 5)dx` = ______
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`