Advertisements
Advertisements
प्रश्न
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
उत्तर
`int_0^1 f(x)*dx = int_0^1 (a + bx + cx^2)*dx`
= `a int_0^1 1*dx + b int_0^1 x*dx + c int_0^1 x^2*dx`
= `[ax + "bx"^2/2 + "cx"^3/3]_0^1`
= `a + b/2 + c/3` ...(1)
Now, `f(0) = a + b(0) + c(0)^2` = a
`f(1/2) = a + b(1/2) + c(1/2)^2 = a + b/2 + c/4`
and
`f(1) = a + b(1) + c(1)^2` = a + b + c
∴ `(1)/(6)[f(0) + 4f(1/2) + f(1)]`
= `(1)/(6)[a + 4(a + b/2 + c/4) + (a + b + c)]`
= `(1)/(6)[a + 4a + 2b + c + a + b + c]`
= `(1)/(6)[6a + 3b + 2c]`
= `a + b/2 + c/3` ...(2)
∴ from (1) and (2),
`int_0^1 f(x)*dx = (1)/(6)[f(0) + 4f(1/2) + f(1)]`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
If `int_0^"a" (2x + 1) "d"x` = 2, find a
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_1^3x^2log x dx`