हिंदी

Evaluate the following : If f(x) = a + bx + cx2, show that ∫01f(x)⋅dx=(16[f(0)+4f(12)+f(1)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`

योग

उत्तर

`int_0^1 f(x)*dx = int_0^1 (a + bx + cx^2)*dx`

= `a int_0^1 1*dx + b int_0^1 x*dx + c int_0^1 x^2*dx`

= `[ax + "bx"^2/2 + "cx"^3/3]_0^1`

= `a + b/2 + c/3`                                 ...(1)

Now, `f(0) = a + b(0) + c(0)^2` = a

`f(1/2) = a + b(1/2) + c(1/2)^2 = a + b/2 + c/4`
and 
`f(1) = a + b(1) + c(1)^2` = a + b + c

∴ `(1)/(6)[f(0) + 4f(1/2) + f(1)]`

= `(1)/(6)[a + 4(a + b/2 + c/4) + (a + b + c)]`

= `(1)/(6)[a + 4a + 2b + c + a + b + c]`

= `(1)/(6)[6a + 3b + 2c]`

= `a + b/2 + c/3`                               ...(2)
∴ from (1) and (2),

`int_0^1 f(x)*dx = (1)/(6)[f(0) + 4f(1/2) + f(1)]`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 4.3 | पृष्ठ १७७

संबंधित प्रश्न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×