हिंदी

Prove that: ∫0af(x) dx=∫0af(a-x) dx. Hence find ∫0π2sin2x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 

योग

उत्तर

Consider R.H.S : `int_0^"a" "f"("a" - x)  "d"x`

Let I = `int_0^"a" "f"("a" - x)  "d"x`

Put a – x = t

∴ – dx = dt

∴ – dx = dt

When x = 0, t = a – 0 = a

and when x = a, t = a – a = 0

∴ I = `int_4^0 "f"("t")(-"dt")`

= `-int_"a"^0 "f"("t")  "dt"`

= `int_0^"a" "f"("t")  "dt"`    .......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"b"^"a" "f"(x)  "d"x]`

= `int_0^"a" "f"(x)  "d"x`   .......`[∵ int_"a"^"b" "f"(x)  "d"x = int_"a"^"b"  "f"("t")  "dt"]` 

= L.H.S.

∴ `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`

Let I = `int_0^(pi/2) sin^2x  "d"x`     .......(i)

= `int_0^(pi/2) sin^2(pi/2 - x)  "d"x`    .......`[∵ int_0^"a" "f"(x)  "d"x = int_0^"a"  "f"("a" - x)  "d"x]`

∴ I = `int_0^(pi/2) cos^2  "d"x`     .......(ii)

Adding (i) and (ii), we get

2I = `int_0^(pi/2) sin^2x  "d"x + int_0^(pi/2) cos^2x  "d"x`

= `int_0^(pi/2) (sin^2x + cos^2x)  "d"x`

∴ 2I = `int_0^(pi/2)1* "d"x`

∴ I = `1/2[x]_0^(pi/2)`

∴ I = `1/2(pi/2 - 0)`

∴ I = `pi/4`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Short Answers II

संबंधित प्रश्न

Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Evaluate `int_1^3 log x  "d"x`


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Solve the following.

`int_1^3x^2 logx  dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×