Advertisements
Advertisements
प्रश्न
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
उत्तर
Consider R.H.S : `int_0^"a" "f"("a" - x) "d"x`
Let I = `int_0^"a" "f"("a" - x) "d"x`
Put a – x = t
∴ – dx = dt
∴ – dx = dt
When x = 0, t = a – 0 = a
and when x = a, t = a – a = 0
∴ I = `int_4^0 "f"("t")(-"dt")`
= `-int_"a"^0 "f"("t") "dt"`
= `int_0^"a" "f"("t") "dt"` .......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"b"^"a" "f"(x) "d"x]`
= `int_0^"a" "f"(x) "d"x` .......`[∵ int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("t") "dt"]`
= L.H.S.
∴ `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`
Let I = `int_0^(pi/2) sin^2x "d"x` .......(i)
= `int_0^(pi/2) sin^2(pi/2 - x) "d"x` .......`[∵ int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
∴ I = `int_0^(pi/2) cos^2 "d"x` .......(ii)
Adding (i) and (ii), we get
2I = `int_0^(pi/2) sin^2x "d"x + int_0^(pi/2) cos^2x "d"x`
= `int_0^(pi/2) (sin^2x + cos^2x) "d"x`
∴ 2I = `int_0^(pi/2)1* "d"x`
∴ I = `1/2[x]_0^(pi/2)`
∴ I = `1/2(pi/2 - 0)`
∴ I = `pi/4`
संबंधित प्रश्न
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`