Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
उत्तर
Let I = `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` ...(i)
= `int_2^7 sqrt(2 + 7 - x)/(sqrt(2 + 7 - x) + sqrt(9 - (2 + 7 - x)))*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`
∴ I = `int_2^7 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx + int_2^7 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x))*dx`
= `int_2^7 (sqrt(x) + sqrt(9 - x))/(sqrt(x) + sqrt(9 - x))*dx`
= `int_2^7 1*dx`
= `[x]_2^7`
∴ 2I = 7 – 2 = 5
∴ I = `(5)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`