Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
उत्तर १
Let I = `int_0^1 log(1/x - 1)*dx`
∴ I = `int_0^1 log((1 - x)/x)*dx` ...(i)
= `int_0^1 log[(1 - (1 - x))/(1 - x)]*dx ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`
I = `int_0^"a" log(x/(1 - x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_0^1 log((1 - x)/x)*dx + int_0^1 log(x/(1 - x))*dx`
= `int_0^1[log ((1 - x)/x) + log (x/(1 - x))]*dx`
= `int_0^1 log ((1 - x)/x xx x/(1 - x))*dx`
= `int_0^1 log 1*dx`
∴ 2I = `int_0^1 0*dx`
∴ I = 0.
उत्तर २
Let I = `int_0^1 log(1/x - 1)*dx`
= `int_0^1 log((1 - x)/x)*dx`
= `int_0^1 [log(1 - x) - logx]*dx` ...(1)
We use the property `int_0^a f(x)*dx = int_0^a f(a - x)*dx`
Here, a = 1
Hence in I, changing x to 1 – x, we get
I = `int_0^1 [log |1 - (1 - x)| - log(1 - x)]*dx`
= `int_0^1 [logx - log(1 - x)]*dx`
= `-int_0^1 [log (1 - x) - logx]*dx`
= – 1 ...[By (1)]
∴ 2I = 0
∴ I = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3x^2 logx dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Solve the following.
`int_1^3 x^2 logxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`