Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
उत्तर
Given, `int_0^"a" (2x + 1)*dx` = 2
∴ `[(2x^2)/2 + x]_0^"a"` = 2
∴ `[x^2 + x]_0^"a"` = 2
∴ [(a2 + a) – (0)] = 2
∴ a2 + a = 2
∴ a2 + a – 2 = 0
∴ a2 + 2a – a – 2 = 0
∴ a(a + 2) – 1(a + 2) = 0
∴ (a + )(a – 1) = 0
∴ a + 2 = 0 or a – 1 = 0
∴ a = – 2 or a = 1.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following:
`int_1^3 x^2 log x*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
`int_1^2 x^2 "d"x` = ______
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Solve the following.
`int_1^3 x^2 logx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`